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For cellular biochemical reaction systems where the numbers of
molecules is small, significant noise is associated with chemical
reaction events. This molecular noise can give rise to behavior that
is very different from the predictions of deterministic rate equation
models. Unfortunately, there are few analytic methods for exam-
ining the qualitative behavior of stochastic systems. Here we
describe such a method that extends deterministic analysis to
include leading-order corrections due to the molecular noise. The
method allows the steady-state behavior of the stochastic model
to be easily computed, facilitates the mapping of stability phase
diagrams that include stochastic effects, and reveals how model
parameters affect noise susceptibility in a manner not accessible to
numerical simulation. By way of illustration we consider two
genetic circuits: a bistable positive-feedback loop and a negative-
feedback oscillator. We find in the positive feedback circuit that
translational activation leads to a far more stable system than
transcriptional control. Conversely, in a negative-feedback loop
triggered by a positive-feedback switch, the stochasticity of
transcriptional control is harnessed to generate reproducible
oscillations.

intrinsic noise � phase diagram � synthetic biology � oscillations

Parallel advances in the conceptual understanding of gene
regulation along with technological advances in molecular

biology have given rise to the possibility of system-level quan-
titative kinetic measurements of living organisms (1) and syn-
thetic genetic circuit designs (2, 3). Interpretation of time-series
data from complex networks and reliable forward-design of gene
circuits depend on detailed quantitative mathematical models (2,
4). These models generally take one of two largely exclusive
forms: either deterministic formulations with reactant concen-
tration varying continuously in time and governed by a system of
rate equations or stochastic formulations that explicitly include
the discrete and probabilistic change in reactant molecule num-
bers as each subsequent reaction occurs (5). Both approaches
have benefits and associated limitations.

The great practical advantage of rate equation models is the
ease with which the qualitative behavior of the system can be
extracted. By focusing on the long-term behavior, the model
dynamics are simplified, and one is able to gain insight into the
expected response of the system (6). Rate equation models,
however, neglect the fact that chemical reaction networks are
composed of species that evolve on discrete space, jumping from
some number of molecules to another as each reaction occurs
(7). The resulting deviation from the deterministic formulation
is called the ‘‘intrinsic noise’’ in the system (because the fluc-
tuations arise from the reaction dynamics themselves and not
from some external source) (8, 9). In cellular systems with small
numbers of reactant molecules, the relative magnitude of the
intrinsic noise can be large, and it can give rise to qualitatively
different behavior than what rate equation models would pre-
dict. A system that has several possible stable states, for example,
may be induced to spontaneous transitions between them as a
result of intrinsic noise (10, 11), leading to a stochastic switching
of states. In an excitable system, noise may cause oscillations to

occur in a model that is otherwise stable (12–14). With a given
set of physical parameters, it is possible to simulate explicitly the
individual chemical reaction events, including the effect of
intrinsic noise (5). Nevertheless, the design of synthetic circuits,
or therapeutics aimed at altering an existing network, require
knowledge of the ‘‘phase diagram,’’ which involves a systematic
mapping of the parameter space. There, stochastic simulation
becomes prohibitively time-consuming even for reasonably sim-
ple genetic circuits involving two or three genes (see below), and
analytical methods are needed.

A number of analytic studies have been done recently to model
intrinsic noise in genetic circuits, much of them built on the linear
noise approximation (15) and focused on the noise property
itself, e.g., ‘‘noise propagation’’ through genetic networks (16,
17), the equilibrium distribution of fluctuations about multiple
steady-states (18), and constructive effects of noise in signal
processing (13, 19). There has been comparatively little work,
however, aimed at providing tools to study the effect of intrinsic
noise on the stability of systems where stochastic models exhibit
qualitatively different behavior from their deterministic coun-
terparts (20). Under these conditions, the linear noise approx-
imation alone cannot predict qualitative changes in the observ-
able dynamics of the system, as, for example, in the case of
noise-induced oscillations (21). Here we present an analytic
method, which we call the ‘‘effective stability approximation’’
(ESA), that extends the applicability of existing deterministic
methods to include stochastic effects. The method is an exten-
sion of the linear noise approximation, including correction of
stochasticity to the deterministic equations to the order 1/N
(where N is the number of molecules in the system). It conve-
niently connects deterministic and stochastic descriptions, al-
lowing for systematic exploration of parameter space while at the
same time including the essential effect of intrinsic f luctuations.
For the two model systems examined here, we find the ESA to
capture reliably the essential features of those systems, correctly
estimating the effect of intrinsic noise on the phase diagrams of
systems dominated by as little as a few dozen molecules.

ESA can be applied to generic models of genetic circuits, and
a brief tutorial is presented in Methods with the hope that the
approach can be used by other investigators to include stochastic
effects in deterministic models. The full mathematical details are
presented in supporting information (SI). We illustrate the
power of the method below by considering two examples: an
autoregulator with positive feedback (an ‘‘autoactivator’’) (22)
and an excitable genetic oscillator linking positive and negative
feedback loops (12, 23). The behavior of both circuits is conve-
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niently visualized by means of a phase diagram that cannot be
practically constructed by using numerical simulations if sto-
chastic effects are to be included. Furthermore, the analysis
reveals that the system behavior is completely governed by a few
dimensionless combinations of model parameters: combinations
that would be very difficult to infer from simulation data alone.
We hope that our presentation of the ESA method will make it
accessible to modelers, bioengineers, and synthetic circuit de-
signers for the analysis of various molecular circuits, while our
description of the behaviors of the two model systems will
provide quantitative-minded biologists with a concrete sense of
the effect of stochasticity as well as a succinct means of char-
acterization (e.g., a phase diagram with reduced variables).

Results and Discussion
Autoactivator. Perhaps the simplest circuit motif able to exhibit
multiple stable states is the autoactivating positive-feedback loop
(Fig. 1A) (24). The circuit consists of a single gene encoding an
activator. Several autoactivator circuits have been experimentally
characterized, including the autoactivation of CI protein by the PRM
promoter of phage � studied by Isaacs et al. (22) and the autoac-
tivation of NtrC by the glnAp promoter of Escherichia coli studied
by Atkinson et al. (23). The autoactivator circuit is expected to
exhibit either a HIGH state, characterized by an elevated level of
protein synthesis, or a LOW state, characterized by a low basal level
of production. We simplify the model by assuming that the activator
binding and mRNA turnover are fast compared with the lifetime of
the protein activator. The effect of the activator is quantified by the
‘‘activation function’’ g(A/KA, f), where A is the activator concen-
tration, KA is the equilibrium dissociation constant of the activator
and its cognate binding site, and f is the maximum fold-activation
in the circuit. As a particular example, we assume a Hill-form for
the activation function g(A/KA, f),

g� A
KA

, f� �

f �1 � � A
KA
�n

1 � � A
KA
�n , [1]

with cooperative activation (n � 2) (4). The resulting model is
a single kinetic equation governing the activator concentration
A(t) (22, 25) (Fig. 1 A),

dA
dt

� ��g�A� � ��A, [2]

where � is the fully activated rate of protein synthesis and � is the
protein degradation rate (which in prokaryotes is often esti-
mated from the growth rate due to growth-mediated dilution).

In the deterministic limit, when the number of reactant
molecules is very large, we expect Eq. 2 to adequately describe
the system behavior. Once initial transients have died out, the
system will approach a steady state, and A reaches its steady-state
value As where the rate of synthesis and degradation balance, i.e.,
��g(As) � ��As. The stability of the steady state is determined by
the response of the system to a small perturbation Ap, found by
linearizing Eq. 2 about As,

dAp

dt
� ���g��As� � ���Ap � ��Ap. [3]

The expression in the square brackets � � [��g�(As) � �] is a
constant that depends on the model parameters. If � is positive,
the small perturbations will grow in time (As is an ‘‘unstable
state’’), whereas if � is negative, the small perturbation will decay
(As is a ‘‘stable state’’). In the stable case, the long-term state of
the system can be thought of as a point located at the bottom of
a valley (or basin of attraction): the more negative the constant
�, the steeper the valley. As the model parameters are varied, the
valley may become more flat (� 	 0) or even develop into a
mountain (� 
 0), resulting in a loss of stability. The parameter
space is divided into regions of different qualitative behavior (as
in Fig. 2A, black curve); the threshold between these domains
indicates where � has changed sign and is called the ‘‘phase
boundary.’’ Although the model seems to depend on a large
family of parameters (�, �, KA, etc.), the stability of the deter-
ministic model is actually described by two dimensionless com-
binations of these parameters: the ratio of the protein concen-
tration with fully activated promoter (A0 � �/�) to the
dissociation constant, A0/KA, and the fold-activation, f.

A B
A δ

AK γ
Aγ

A

Aδ R
Rδ

AK RK Rγ

Fig. 1. Two example circuit motifs. (A) A positive-feedback loop capable of
maintaining two stable states (22). (B) An excitable oscillator that exhibits
noise-induced oscillations (12, 23). The autoactivator triggers the production
of a repressor R that provides negative feedback control. Dashed arrows,
lumped transcription and translation; bold filled arrows, activation; blunt
arrow, repression; wavy arrows, degradation.

Fig. 2. Stability phase plot for the autoactivator (Fig. 1A), including the effect of intrinsic noise. (A) The black dashed curve is the phase boundary of the
deterministic model with transcriptional activation (A0/KA is the fully activated protein concentration scaled by the activator/DNA dissociation constant).
Increasing the level of intrinsic noise by increasing the discreteness parameter �b (i.e., increasing the ‘‘burstiness’’ of translation or decreasing the number of
molecules) diminishes the parameter regime of reliable bistability (Re[��] � 0). Here, �b � 0.1 (black solid line), 0.2 (dark gray), and 0.3 (light gray). (B) The average
escape time from the stable state is an indicator of the permanence of the bistability. Here, the dark gray curve from A corresponds to an escape time of
approximately � � 6, where time has been scaled relative to the protein lifetime ��1. (C) As in A, but now with translational activation. The range of bistability
is considerably widened as transitions from the LOW to the HIGH state are suppressed. Here, KA�Vcell � 25 molecules, and the fully activated burst size is b � 4
(black), 9 (dark gray), and 14 (light gray).

Scott et al. PNAS � May 1, 2007 � vol. 104 � no. 18 � 7403

A
PP

LI
ED

M
A

TH
EM

A
TI

CS
BI

O
PH

YS
IC

S



The ESA we propose is an approximation that allows the
average effect of intrinsic noise to be expressed as a positive
correction to �,

�� � � � �corr��corr � 0�, [4]

(see Eq. 13 below). The correction reflects an effective ‘‘f lat-
tening’’ of the local landscape by stochastic f luctuations, making
it easier for the system to escape from the basin of attraction.
Adopting this perspective allows the analysis used to study the
deterministic model to be extended to the stochastic model with
only minor modification. With �� corrected to include the effect
of the intrinsic noise, the new phase boundaries are drawn to
coincide with points in parameter space where �� � 0.

A major source of intrinsic noise in gene regulatory networks
is so-called translational bursting (7, 26), where each mRNA
transcript is translated into several peptides before the message
is degraded, leading to a ‘‘burst’’ of protein synthesis. Typical
values of the ‘‘burst size’’ b can vary from close to zero for poorly
translated genes (27) up to several dozen (28, 29) depending on
the rate of translation and the lifetime of the transcript. When
intrinsic noise is included in the autoactivator model, and the
procedure described in detail in Section IIIA of SI is applied, we
find the correction to � is �corr 
 �b/�2, where

�b �
�b � 1�

2
1

KAVcell
�

�b � 1�

2
1

NA
, [5]

is a third dimensionless quantity we call the ‘‘discreteness
parameter.’’ This parameter captures the average change in
protein number when a synthesis or degradation event occurs,
scaled relative to the protein number required to initiate acti-
vation NA � KA � Vcell, where KA is the activator dissociation
constant and Vcell is the cell volume. Increasing the discreteness
parameter �b increases the magnitude of the discrete change in
activator numbers and, therefore, increases the relative magni-
tude of the perturbation to the system caused by the intrinsic
noise. One would expect the circuit to switch more readily from
stable state to stable state as the magnitude of the intrinsic noise
is increased, thereby reducing the average stability of the circuit.
On the other hand, as the number of activator molecules
increases (NA3 �), the discreteness parameter vanishes and the
behavior of the system is fully described by the deterministic
model. Thus, the discreteness parameter �b represents a distil-
lation of the complicated effect of intrinsic noise on the model
behavior, captured in a compact expression that would be
difficult to extract from numerical simulation data.

As shown in Fig. 2 A, for the autoactivator the parameter space
is divided into regions of bistability (two stable states) and
monostability (one stable state). The bistability is most easily lost
near the phase boundary separating the bistable and monostable
states. The circuit parameters of Isaacs et al. (22) lie close to the
left-hand tip of the black triangle in Fig. 2 A ( f 	 10), and as they
observed in their experiments, the noise overwhelms bistability
in such a system (cf. figure 2A of ref. 22), leading to rapid
transitions between the stable states. A much greater fold-
activation is required to maintain two distinct stable states (as
likewise noted by the authors).

Actually, once noise is allowed in the autoactivator model, one
no longer has stability in the strictest sense because there is
always a chance that a perturbation will switch the system from
one steady state to the other. With noise, it is not a question of
stability, but rather the average escape time from the steady state
(10, 11). The longer the escape time (compared with other time
scales in the problem), the more ‘‘stable’’ the system. To
emphasize the effect of the intrinsic noise on the stability phase
plot, we consider a system with a small number of activator
proteins (KA�Vcell � 25 molecules). Using the parameters � � 2

protein�min�1, ��1 � 30 min (a half-life of 	20 min), KA � 25
nM, and a burst size of b � 10, the discreteness parameter in E.
coli (Vcell 	 1 	m3) is �b 	 0.2. From Fig. 2 A (dark gray curve),
a maximum fold-activation of f 
 40 is necessary to ensure
long-lived bistable states (shown as a cross on the plot). It is
possible to explicitly compute the average escape time from the
stable states for this simple model (see refs. 30 and 31 and Section
II of SI). Fig. 2B compares the average escape time as a function
of A0/KA and f for the case above, with �b � 0.2 (dark gray curve
in Fig. 2 A). Along the dark gray curve, the escape time is � �
(3 � 0.5) h, which is approximately six times longer than the
protein lifetime (which sets the basic time scale of the system’s
‘‘memory’’).

The escape time is an indirect measure of the system’s stability.
We have developed a more direct method that measures the
effective rate of divergence of an ensemble of stochastic trajec-
tories. This method is of general applicability and allows a direct
evaluation of the accuracy of the ESA. The details of that
calculation are reserved for SI (see Section III-A.2). Comparing
�� with the effective rate of divergence in the stochastic simu-
lations of the autoactivator, the ESA is found to be accurate for
systems with �b � 0.25.

The burst size b can be reduced by decreasing the rate of
translation, and indeed Ozbudak et al. (27) suggest that many
poorly translated genes in E. coli could be the result of evolu-
tionary selection against burst noise. Alternatively, the method
of control in the circuit can be shifted from transcriptional to
translational activation. Although the simple deterministic
model remains unchanged for either choice of transcriptional or
translational control, the resulting stochastic model exhibits
improved stability for translational activation.

Fig. 2C shows the result of putting the translation rate under
control of the activator. Decreasing the translation rate in the
LOW state has the effect of shifting the upper branch of the
phase boundary, indicating a decrease in transitions from
the LOW to the HIGH state. The translational autoactivator can
tolerate a larger range of transcription rates (i.e., higher �) and
a lower maximum fold-activation ( f 
 20), even for large burst
size. As above, with � � 2 protein�min�1, ��1 � 30 min, KA �
25 nM, Vcell � 1 	m3 and a fully activated burst size b � 10, a
fold-activation of f 
 25 is required to sustain the bistability
(shown as a cross on the plot), almost half that required in the
transcriptional autoactivator above.

To generate the phase plot for a given stochastic model
requires division of the parameter space of the model (Eq. 2) into
a fine grid, with stochastic simulation performed at each point.
Even after several such simulations are generated, it is unlikely
that the discreteness parameter �b will suggest itself as a key
measure of the magnitude of intrinsic noise. The ESA method
provides not only a rapid overview of the parameter space, but
also compact expressions characterizing the effect of intrinsic
noise on the observable dynamics. In the next section, we apply
ESA to the analysis of a more elaborate circuit model.

Genetic Oscillator. Oscillating systems underlie many physiologi-
cal processes in the cell, from circadian rhythms (32) to the cell
cycle itself (33). In addition to the natural systems, several
synthetic genetic oscillator designs have been studied, including
the mutually repressing ring-oscillator (Repressilator) of Elowitz
and Leibler (34) and the activator–repressor design of Atkinson
and coworkers (23) (which has a great deal in common with the
model discussed below). A recurring motif in experimentally
characterized networks is a negative-feedback loop serving as a
system reset (32, 35). Without some time delay or intervening
mechanism to prevent reversibility, the system will rapidly
approach an intermediate equilibrium, and it is found both
theoretically (36) and experimentally (33) that a negative feed-
back loop alone is not sufficient to maintain reliable oscillations.
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If, however, the feedback repressor is controlled by a bistable
autoactivator, the oscillations become more robust and coherent
because the bistable switch acts as a ratchet that ‘‘locks’’ into the
HIGH state generating a large amount of repressor to feedback
and reset the system to the LOW state where the system remains
until the activator accumulates over a critical threshold to initiate
another cycle (37). This motif is highly represented in natural
gene networks (35), and we will use the ESA to ascertain the
contribution of intrinsic noise to the performance of such an
oscillator.

We consider the generic model proposed by Vilar et al. (12)
to describe circadian rhythms in eukaryotes, with a transcrip-
tional autoactivator driving expression of a repressor that pro-
vides negative control by sequestering activator proteins through
dimerization (13, 38). The repressor and activator form an inert
complex until the activator degrades, recycling repressor back
into the system. In their model, the degradation rate of the
activator, �A, is the same irrespective of whether it is bound in the
inert complex or free in solution. We simplify their original
model somewhat, and as in the previous section, we assume fast
activator/DNA binding and rapid mRNA turnover, leading to a
reduced set of rate equations governing the concentration of
activator A, repressor R, and the inert dimer C,

dA
dt

� �A�g� A
KA

, fA� � �A�A � �C�A�R

dR
dt

� �R�g� A
KR

, fR� � �R�R � �C�A�R � �A�C

dC
dt

� �C�A�R � �A�C.

[6]

We further assume no cooperativity in activator binding (n � 1
in the activation function g) and the nominal parameter set used
in ref. 12. For this more complicated system, there is a larger
number of dimensionless combinations of parameters that char-
acterize the system dynamics. The scaled repressor degradation
rate 
 � �R/�A is a key control parameter in the model because
oscillations occur in the deterministic system only for an inter-
mediate range of this parameter. For the nominal parameter set
used in ref. 12, the deterministic model exhibits oscillations over
the range 0.12 � 
 � 40 (Fig. 3A, black region). We will focus
on the parameter regime near to the phase boundary at 
 	 0.12
and examine the role intrinsic noise plays in generating regular
oscillations from a deterministically stable system.

Applying the ESA to the oscillator model, the parameter �bA
�

(bA � 1)/(2�KA�Vcell) emerges as an important measure quanti-
fying the discreteness in activator synthesis (see Eq. 36 in SI).

Here again, bA is the burst size in the activator synthesis, KA is
the activator/DNA dissociation constant, and Vcell is the cell
volume. (Here, Vcell � 100 	m3 as is appropriate for eukaryotic
cells.)

Using the nominal parameter set of Vilar et al. (12) in our
reduced model leads to a burstiness in activator synthesis of bA �
5 (giving �bA

� 6 � 10�2) and a burstiness in repressor synthesis
of bR � 10. The phase boundary predicted by the ESA is shown
as a solid line in Fig. 3A, bounding a region of parameter space
between the deterministic phase boundary where qualitatively
different behavior is expected from the stochastic model. We
examine the system behavior in this region by running a sto-
chastic simulation using the parameter choice � � 0.1 and �bA

�
6 � 10�2 (denoted by a cross in Fig. 3A). With this choice, the
deterministic model is stable (Fig. 3B, black line). Nevertheless,
a stochastic simulation of the same model, including protein
bursting and stochastic dimerization, clearly shows oscillations
(Fig. 3B, dotted line).

The time between successive peaks in the stochastic simulation
of Fig. 3B is denoted by T. As is clear from Fig. 3B, T is itself a
random variable. Each simulation run generates a collection
of interspike times from which the mean �T� and the variance
�(�T� � T)2�1/2 can be calculated. Following Steuer et al. (13), the
quality of the noise-induced oscillations is measured by using the
noise-to-signal ratio �T � �(�T� � T)2�1/2/�T�, and the system is said
to exhibit regular oscillations where �T is small (13, 38). The
dependence of �T on the repressor degradation rate � is shown
in Fig. 3C, with the discreteness parameter �bA

� 6 � 10�2 (as
in Fig. 3B), using at least 200 spikes to calculate �T. At low
repressor degradation rate, the noise-to-signal ratio is high,
indicating large variance in the interspike time T and corre-
sponding to a stable (i.e., nonoscillatory) system. As the repres-
sor degradation rate is increased, the variance in the interspike
time T decreases with a consequent decrease in the noise-to-
signal ratio �T, indicative of a more regularly oscillating system.
Physically, the intrinsic noise in this parameter range is sufficient
to drive the system away from the deterministically stable steady
state, yet the noise is not so strong that the return trajectory
through phase space is much affected.

As in the autoactivator model, it is useful to compare the phase
boundary predicted by the ESA to some independent measure
of stability, in this case �T. In Fig. 3C, the ESA phase boundary
(for �bA

� 6 � 10�2) is denoted by the interface between the
white and gray regions, corresponding to a value of �T 	 0.2.
Using data such as that shown in Fig. 3C, the points in the phase
plot with �T � 0.2 can be found for a range of discreteness
parameter �bA

(Fig. 3A, filled circles). These points correspond
very well to the phase boundary calculated by using the ESA
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Fig. 3. Noise induced oscillations in the excitable oscillator. (A) Stability phase plot as a function of the scaled repressor degradation rate � � �R/�A for the circuit
shown in Fig. 1B. The discreteness in the activator synthesis, �bA, characterizes the average discrete change in activator concentration during each reaction, and
consequently the magnitude of the intrinsic noise. The intrinsic noise expands the region of instability (gray), extending the parameter range over which
oscillations are expected to occur. The deterministic phase boundary is located at � 	 0.12 (dashed line separating the black and gray regions). The solid line is
the phase boundary predicted from the roots of Eq. 12, and filled circles denote the phase boundary found by stochastic simulation (see text). The model and
parameters are as in Vilar et al. (12). (B) The circuit exhibits noise-induced oscillations (dotted line) with interspike time T. The parameters used in the simulation
correspond to a deterministically stable system (solid line). Numerical simulation data were generated by using Gillespie’s direct method (5), with parameters
as used in ref. 12 and � � 0.1, �bA � 6 � 10�2 (cross in A). (See Section III-C of SI.) (C) A plot of the noise-to-signal ratio �T � �(�T� � T)2�1/2/�T� as a function of �.
The oscillations are regular when �T is small (the region of noise-induced oscillations predicted by the ESA is gray), and �T was calculated by using at least 200
spikes for each point.
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(Fig. 3A, solid line). The results are as one would expect: near
the deterministic phase boundary, very little molecular noise is
required to sustain oscillations, and reasonable periodicity
persists even for small values of the discreteness parameter
(�bA

3 0, bR � 0). As the repressor degradation rate � is
decreased to a region favoring stability, more noise is required
to overcome the deterministic stability of the system and initiate
the autoactivator trigger. It is illustrative to remark that each
data point in Fig. 3A, obtained from stochastic simulation (5),
took 	1 day to generate on a dual-processor desktop computer
because at low repressor degradation rate, a large separation of
timescales is introduced, necessitating long stochastic simulation
runs to capture the slowly varying dynamics of the system. By
contrast, the solid line generated from the roots of Eq. 12 took
�1 h to produce on the same machine. Thus, even for a two-gene
circuit with several degrees of freedom, the ESA affords a
compact and convenient means to survey the phase space,
drawing attention to those regions of particular interest that may
be probed in more detail by more realistic (although also more
computationally costly) stochastic simulation methods.

Methods
The ESA can be applied to generic models of genetic circuits in
a straightforward way. Here, a brief outline of the method is
provided. A self-contained tutorial on stochastic modeling and
the ESA is provided in SI.

A useful abstraction of genetic regulatory networks is as a
system of ordinary differential equations (39, 40). (Here, and
throughout, we shall assume a spatially homogeneous environ-
ment.) We denote the concentrations of the reactants of interest
by the state vector x, where the xi values correspond to the
concentration of mRNA, transcription factors, protein products,
etc. The kinetic equation governing the evolution of the system
takes the form dx/dt � f(x), where f is a vector of nonlinear
functions of the state variables. We can estimate the long-time,
or steady-state, behavior of the model by first computing the
equilibrium points xs that satisfy the algebraic constraint f(xs) �
0. We then Taylor expand the reaction rate vector about the
equilibrium point by making the substitution x � xs � xp (where
xp is an infinitesimal perturbation away from xs), and retain only
linear terms in xp. The resulting dynamics of xp are given by
(d/dt)xp � J�xp, where J is the Jacobian or response matrix: Jij �
�fi/�xj. The eigenvalues of J are the matrix analogue of the
parameter � introduced in Eq. 3, and in a similar fashion if the
eigenvalues all have negative real-part, then xs is a stable steady
state. [There are, of course, limitations to how far one can trust
the linearization (6), but for our purposes it is sufficient as a first
approximation.]

To include stochastic effects in the mathematical model,
chemical reaction rates must be rewritten in terms of the reaction
‘‘propensity’’ and ‘‘stoichiometry’’ (5). For example, in the
positive autoactivator example above, with the individual syn-
thesis and degradation stoichiometries written explicitly, the
deterministic model equations (Eq. 2) read

bursty synthesis: A O¡
�1

A � b ; �1 �
�

b
�g�A� ,

linear degradation: AO¡
�2

A � 1; �2 � � �A .

[7]

We encode this information concisely as the ‘‘propensity vector’’
� � [�1, �2] � [��g(A)/b, ��A] and the stoichiometry matrix S �
[b, �1]. The discrete change in molecule numbers after the
completion of a chemical reaction causes a deviation from the
deterministic solution because the deterministic model assumes

an infinitesimally small and continuous change in the state.
(Consequently, the deterministic model only applies to systems
with large numbers of molecules.) We denote the deviation of
the stochastic model from the deterministic model by the
fluctuating quantity ���(t), where � � 1/�Vcell and �(t) de-
scribes the stochastic deviation in each species x. The �Vcell
scaling arises from the observation that the relative magnitude
of the intrinsic noise scales roughly as the inverse square root of
the number of molecules (15). Elf and Ehrenberg (21) developed
an algorithmic expression for the statistics of � using the linear
noise approximation of vanKampen (15). In that formulation,
the mean and covariance of the fluctuations about the deter-
ministic state are written compactly in terms of the propensity
vector � and the stoichiometry matrix S; here, we shall apply their
method to characterize the fluctuations about the stable state.
The first step in the calculation of the moments of the fluctu-
ations ��(t) is to construct the auxiliary matrices � and D,
evaluated at the stable state xs,

�ij�t� �
��S��� i

�xj
�

�f i

�xj
D � S�diag��� �ST. [8]

The drift matrix � � J is the response matrix (or Jacobian)
described above and reflects the local stability of the determin-
istic system to small perturbations (41). The diffusion matrix D
captures the strength of the fluctuations and is related to the
magnitude of the reaction step size (21, 42). It is straightforward
to show that to leading order in � the mean of the fluctuations
is zero (��� � 0) and the variance, denoted by the symmetric
matrix � � ����T�, is determined by the solution of the system
of algebraic equations (15), �� � � ���T � D � 0. Because the
fluctuations about the stable state are stationary, the time
autocorrelation function depends on the time difference only
and is given by the matrix exponential

��� t��T� t � ��� � exp���� �� . [9]

The effect of the fluctuations on the deterministic steady-state
is calculated by including an additional term in the deterministic
linearization above: x � xs � xp � ��. Linearizing J in �, we have
a stochastic differential equation governing the decay of the
perturbation modes xp

d
dt

xp � �J�0� � �J�1�� t�� �xp. [10]

The fluctuations affect the decay of the infinitesimal disturbance
xp as well as the dynamics of the average �xp�, which (provided
�J(1)(t) �� J(0)) is approximately governed by the convolution
equation (43, 44)

d
dt

�xp� t�� � J�0��xp� t�� � �2 �
0

t

Jc� t � ���xp����d� ,

[11]

where Jc(t � �) � �J(1)(t)eJ(0)(t � �)J(1)(�)� is made up of linear
combinations of the cross-correlations ��i(t)�j(�)� given by the
ith row and the jth column of the right-hand side of Eq. 9. In the
noiseless case, the stability of the perturbation xp is determined
by the eigenvalues of J(0): diag{�i} � P�1�J(0)�P where the matrix
P is made of the eigenvectors of J(0). The analogues of the
eigenvalues for the convolution equation above are found from
the poles of the Laplace transform, denoted ��, which solve the
resolvent equation (45)
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det	 ��I � J�0� �
1

Vcell
Ĵc����
 � 0. [12]

Here �2 has been replaced by Vcell
�1 and Ĵc(s) � �0

�Jc(t)e�stdt is the
Laplace transform of Jc(t). If the deterministic eigenvalues are
distinct, we can further approximate the effective eigenvalue
��i by

�i� � �i �
1

Vcell
�P�1�Ĵc�� i� �P� ii, [13]

where [�]ii denotes the ith diagonal entry of the matrix. Physically,
we interpret the leading-order noise correction as the power in
the fluctuations at eigenfrequency �i projected in the eigendi-
rection of �i. Because the correction term is quadratic, it is always
positive and thus destabilizes the eigenmode on which it is
projected. (Hence, in Eq. 4 we write �corr 
 0.)

It often happens that out of the term 1/Vcell[P�1�Ĵc(�i)�P]ii there
appears a small parameter that quantifies the effect of the

intrinsic noise. (For the two examples above, the small param-
eters are �b and �bA

, each characterizing the discreteness of the
protein change.) In the limit that this parameter goes to zero, the
effect of the intrinsic noise becomes negligible, at least in that
particular eigenmode.

Finally, the ESA can be easily implemented in a symbolic
computational environment, without attending to the mathe-
matical details (see Section IV of SI). A version of the ESA coded
in Mathematica is freely available from the authors upon
request.
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